Stability analysis of a phase-field model of gravity-driven unsaturated flow through porous media.
نویسندگان
چکیده
The formation of preferential flow paths during infiltration of water into homogeneous, dry soil is an important phenomenon whose explanation and prediction have remained elusive under the standard theories of multiphase flow in porous media. We have recently proposed a macroscopic phase-field model of unsaturated flow in porous media, which explains why such fingering occurs [L. Cueto-Felgueroso and R. Juanes, Phys. Rev. Lett. 101, 244504 (2008)]. Here we present a linear stability analysis of the proposed model for constant-flux infiltration, which allows a quantitative description of the wetting front instability. The present analysis stresses the critical role of the initial water saturation and applied flux ratio in the asymptotic stability of the system, as well as in the transient growth of perturbations, which is consistent with the experimental evidence. The trends in the frequency and growth factor of the most unstable modes predicted by our analysis are also in quantitative agreement with experimental measurements.
منابع مشابه
Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media.
Existing continuum models of multiphase flow in porous media are unable to explain why preferential flow (fingering) occurs during infiltration into homogeneous, dry soil. Following a phase-field methodology, we propose a continuum model that accounts for an apparent surface tension at the wetting front and does not introduce new independent parameters. The model reproduces the observed feature...
متن کاملThree-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium
10 Infiltration of water in dry porous media is subject to a powerful gravity-driven instability. Although the phenomenon of unstable infiltration is well known, its description using continuum mathematical models has posed a significant challenge for several decades. The classical model of water flow in the unsaturated flow, the Richards equation, is unable to reproduce the instability. Here, ...
متن کاملHysteresis models and gravity fingering in porous media
We study flow problems in unsaturated porous media. Our main interest is the gravity driven penetration of a dry material, a situation in which fingering effects can be observed experimentally and numerically. The flow is described by either a Richards or a two-phase model. The important modelling aspect regards the capillary pressure relation which can include static hysteresis and dynamic cor...
متن کاملComparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media
The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...
متن کاملMultiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis
In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2009